SEMINAR | CELS

UNCERTAINTY-INFORMED DEEP NEURAL NETWORK WITH REJECT OPTION: PREDICTING TOXICITY OF PFAS "FOREVER CHEMICALS"

JEREMY FEINSTEIN EVS Division

11 June 2021

UNCERTAINTY-INFORMED DEEP TRANSFER LEARNING OF PFAS TOXICITY

Jeremy Feinstein¹, Ganesh Sivaraman², Kurt Picel¹, Brian Peters¹, Álvaro Vázquez-Mayagoitia³, Arvind Ramanathan², Margaret MacDonell¹, Ian Foster², Eugene Yan¹

- 1. Environmental Science Division
- 2. Data Science and Learning Division
- 3. Computational Science Division

https://doi.org/10.26434/chemrxiv.14397140.v1

 Transfer learning

 PFAS

 Uncertainty

 Informed

 decision

 Data collection

 & molecule

 featurization

CONTRACTOR And A Contract of C

INTRODUCTION & HYPOTHESIS

- PFAS class of man-made chemicals with diverse range of properties and uses. Toxicity properties largely unknown.
- Pose significant hazard for >600 DOE/DOD facilities
- Approaches to assess *in vivo* toxicity are expensive
- Literature demonstrates certain toxicity endpoints may partially be understood and predicted computationally
- Urgent need to examine the role of computational approaches in aiding or replacing expensive in vivo experiments
- Can we generally predict PFAS toxicities & uncertainty on EPA list of >8,000
 PFAS
 PFAS
 Interview Management of Manage

PFAS: EMERGING CONTAMINANTS Per- and polyfluoroalkyl substances (PFAS)

Class of man-made chemicals of mounting national concern and government attention

4

Sources and Uses

- **Manufacturing** (uranium processing, metal plating, lubrication)
- Aqueous firefighting foams (AFFFs)
- Consumer/household
 products

Figure 1 from Sunderland et al. (2019) Journal of Exposure Science & Environmental Epidemiology 29(2). doi:10.1038/s41370-018-0094-1

CONTRACTOR AND A CONTRACT OF A CONTRACT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

PFAS: ENVIRONMENT & EXPOSURE

Chemical release into environment

Exposure

- Widespread
- Persistent in environment
- Above advisory levels (not enforced)
- Accumulates in blood, liver, and kidneys
 when exposed

Installations Conducting Assessments for PFAS Use or Potential Released

CONTRACTOR AND A CONTRACT OF A CONTRACT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

TOXICITY

- Lifetime Health Advisory for two common PFAS (PFOS & PFOA) @ low concentration of PFOS and PFOA (70 parts per trillion)
- Understanding of PFAS toxicities lacking across >8,000 PFAS compounds
- Traditional in vivo experiments for toxicity expensive
- Complex due to the range of chemical/biological/cellular factors

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

TOXICITY

Endpoint

- Median lethal dosages (LD₅₀) dosage fatal to ½ population of animals
- Measured in substance amount taken orally (g or mol) per lab rat mass
- Units: ^{mg}/_{kg} or -log(^{mol}/_{kg})

Category	Toxicity	Dosage (mg/kg)
1	High	≤50
Ш	Moderate	50 to 500
Ш	Low	500 to 5,000
IV	Very low	>5,000

EPA toxicity classes

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

AI4PFAS WORKFLOW

Blueprint for exploration

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

DATASETS

Aggregating toxicity data

- 13,329 organic compounds with oral rat LD₅₀ measurements
 - (combined EPA, NIH, NTP datasets) <u>LDToxDb</u>
 - 59 PFAS identified by structural (SMILES) match with EPA list
 - 518 (incl. 59 PFAS) selected by quantity of C-F bonds <u>LDToxDb-PFAS-like</u>

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Argonne 🛆 | 75

CHEMICAL FEATURIZATION

Calculating molecular descriptors and encodings

- Molecular descriptors from Mordred package
- Fingerprint encodings (Extended-Connectivity Fingerprint)
- Graph structure representation (nodes=atoms, edges=bonds)

nAtoms	nAromRing	nDblBond
25	0	3
31	2	10
7	0	2

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

radius=1

radius=2

MACHINE LEARNING METHODS

Supervised learning approaches

Deep neural network (DNN)

- Random Forest
- Graph convolutional network (GCN)
- Gaussian process

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

LIT REVIEW + BASELINES

Authors	Year	Dataset	Sample size	Method	R2	MAE	RMSE
Gadaleta et al.	2019	CATMoS	8,448	Ab initio QSAR	0.651	0.39	0.541
Liu et al.	2018	Leadscope Toxicity Db	10,363	RF regressor	0.58		0.60
Wu et al.	2018	EPA ECOTOX	7,413	Consensus (RF, GBDT, ST-DNN, MT-DNN)	0.653	0.421	0.568
Xu et al.	2017	admetSAR, EPA TEST, MDL	12,173	Consensus (GCN)		0.348	0.465
Bhhatarai et al.	2011	ChemIDplus	50 (PFAS only)	Linear regression. Genetic algorithm for feature selection	0.883		0.47
Zhu et al.	2009	ChemIDplus	>8000	Consensus (kNN, RF, hierarchical clustering, NN)	0.71	0.39	

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

BENCHMARKING MODELS

Method	Input	LDToxDB			
		R ²	MAE	RMSE	Accuracy
DNN	Mordred descriptors	0.658	0.342	0.516	0.680
DNN	2048-bit ECFP, r=1	0.611	0.385	0.549	0.644
GCN	Graph (node=atom, edge=bond)	0.623	0.380	0.541	0.641
GP	10 Mordred descriptors, 200 ECFP bits	0.627	0.376	0.538	0.650
RF regression	Mordred descriptors	0.647	0.372	0.523	0.660
RF regression	4096-bit ECFP, r=2	0.584	0.410	0.569	0.623
RF regression	NMF-reduced 4096-bit ECFP, r=2	0.464	0.479	0.645	0.574

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

TARGETED LEARNING

Targeted prediction with transfer learning workflow

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Argonne 🛆 | 75

TRANSFER LEARNING Results

- Transfer-step adjustments • corresponding with level 1 were used
- No performance degradation
- Positive transfer established

Argonne National Laboratory is a
U.S. Department of Energy laboratory
U.S. Department of Energy laboratory
anaged by UChicago Argonne. LLC

EXPLORING UNCERTAINTY

Approaches

- Deep ensemble
 - Multiple DL models trained and converge to different local minima
 - Distribution of predictions made by *N* ensemble models communicates uncertainty

Latent space

- Dimensional analysis of cross-section of the model's prediction
- UMAP used on representation layer. *Distance(prediction, training set)* used as correlative metric

Lakshminarayanan et al. Simple and Scalable Predictive Uncertainty Estimation Using Deep Ensembles. *Proceedings of the 31st International Conference on Neural Information Processing Systems* (2017)

Janet et al. A quantitative uncertainty metric controls error in neural network-driven chemical discovery. Chemical Science (2019) 16
Argonne
75

UNCERTAINTY ANALYSIS

Uncertainty derived on Transfer-DNN-Mordred predictions

UNCERTAINTY ANALYSIS

Deep ensemble and pitfalls

- Successfully characterization of local uncertainty
- ~58% of uncertainty metrics correspond with prediction error
- Overconfident learning
- Application challenges

W.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

SELECTION: TO PREDICT OR NOT TO PREDICT? Converting uncertainties into automated decisions

Paradigm which allows the model to respond "I can't answer", when the confidence is low

$$(f,g)(x) = \left\{ egin{array}{cc} f(x), & if \ g(x) \ \geq \ au \ Don't \ know, & Otherwise \end{array}
ight.$$

• Employed within input space of limited understanding

Geifman et al. *SelectiveNet: A Deep Neural Network with an Integrated Reject Option.* International Conference on Machine Learning (2019)

W.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

SELECTIVE NET: TRAINING

$$\mathcal{L}_{(f,g)} = r(f,g \mid S_k) + \lambda \max(0, (c - \phi(g \mid S_k)))^2$$

Selective risk

Penalty term for over-abstention

- Abstention comes with no risk
- Prediction carries risk

- But may come with penalty
- Comes with no abstention penalty

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

•

TRANSFER-SELECTIVE-NET-MORDRED

Predicting EPA list of >8,000

Genergy Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

TRANSFER-SELECTIVE-NET-MORDRED

a) Distribution of selective predictions on EPA PFAS structure list. (Inset) Prediction/abstention (%) of ea. superclass. The label provides the % composition of ea. superclass within the entire EPA PFAS structure list.

b) SN-Mordred predictions categorized by EPA toxicity class.

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

BLUEPRINT FOR COMPOUND SELECTION

Aiding future experimental designs with Al4PFAS

- Active learning
- Computationallyrecommended experiments
- Co-informed cycle
- Paper: doi.org/10.26434/chemrxiv.14397140.v1
- **Source:** github.com/AI4PFAS/AI4PFAS/

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

QUESTIONS

Paper: doi.org/10.26434/chemrxiv.14397140.v1

Source: github.com/AI4PFAS/AI4PFAS/

Jeremy Feinstein jfeinstein@anl.gov

Genergy Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

